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Abstract

 Technology has reached a point where conversational agents, in the form of Home 

Assistants and Intelligent Chatbots, are capable of understanding and responding to 

human speech. Due to their widespread use around the globe, especially in a 

multilingual country like India, such assistants are programmed to be capable of 

understanding speech and conversing for an array of languages. Multilingual users 

tend to replace certain subsets of a language's vocabulary with another language 

when conversing, end up being misinterpreted and hence fail to elicit an appropriate 

response from the assistant. Yet, code switching is not inherently taken care of by 

today’s intelligent assistants. This project, therefore, specifically deals with 

vernacular code switching in Hindi-English and Kannada-English switches.

 



Problem Statement
 

   This project aims at providing facilitation to Indian multilingual speakers by 
handling vernacular code switched requests made by users while conversing with 
intelligent assistants and providing desired responses to the users. This project 
additionally throws insights on performance studies of cross-lingual models used 
in the pipeline. This project also includes generation of corpus of code-switched 
Hinglish and Kanglish frequently asked questions (FAQs) and Common action 
dependent queries from a variety of different domains.



Scope
Home Assistants and Chatbots:
● Interact with a larger user base consisting of people who interact primarily in code 

mixed speech.

● Make a more robust assistant that can handle a larger variety of user queries.

Preprocessing aid:
Handling the issue of code mixed language data that are difficult to be processed and 

analysed, by providing a preprocessing solution to make it comprehensible to any 

generic algorithms of intelligent systems performing various NLP tasks.

Scaling:
 This project can setup experiments for a similar tasks with a slight variation in the 

languages dealt with, namely kannada-english code switching, and hindi-english code 

switching.



Objectives
The core objective of the project focuses on the task of building a robust vernacular 

voice assistant that can handle code switched queries made by Indian multilingual users. 

It involves sub-tasks such as - 

● Building a Hinglish FAQs corpus.

● Building a Kanglish FAQs corpus.

● Intent classification of the code switch queries in Hinglish and Kanglish.

● Identifying keywords contributing to intent.

● Named entity recognition of Hinglish and Kanglish code switched queries.

● Identifying the intent of the user and providing desired response.



Introduction to Code-Switching
Code Switching - In linguistics, code-switching occurs when a speaker alternates between 
two or more languages, or language varieties, in the context of a single conversation. 

Examples 

1. Conveyed - nanu barak munchene, he left

To be conveyed - He left before I came. 

2. Conveyed - nanu vehicle park madi manage hoguttini 

To be conveyed -  I will park the vehicle and then go home. 

3. Conveyed - Report submit kardena before going home

To be conveyed - submit the report before going home



Challenges and Issues
1. There are no fixed regions where code-switching tend to occur. Therefore identifying the 

code-switched regions is critical.

2. Dataset of text/speech segments that posses code switched FAQs is not available.

3. Building the intents dataset is laborious. 

4. Utterance and pronunciation of Non-English words in code-switched text needs to be 
considered.

5. Misspelt words are tough to handle.



Corpus generation



Code-Switched 
Hinglish Dataset

Class Number 
of 
samples

Number of 
unique  
tokens in 
Hindi

Number of 
unique 
tokens in 
English

Delivery 
queries

170 101 118

Insurance 
queries

155 74 181

Aadhaar 
queries 

155 109 161

Medical 
queries

175 111 156

Find nearest 
queries

100 55 107

Reminder 
queries

100 84 138

Booking 
queries

150 160 199

Table 1 : Details of Hinglish corpus collection



Code-Switched
Kanglish Dataset

Class Number 
of 
samples

Number 
of 
unique  
tokens in 
Kannada

Number of 
unique 
tokens in 
English

Delivery 
queries

160 105 110

Aadhaar 
queries 

152 111 149

Medical 
queries

175 114 153

Find 
nearest 
queries

46 27 46

Reminder 
queries

64 58 92

Booking 
queries

150 172 187

Table 2 : Details of Kanglish corpus collection



Standard code-switching metrics
● Multilingual Index (M-index) : A word-count based measure quantifying the inequality of 

distribution of language tags in a corpus of at least two languages.

k = number of languages involved

p
j
 is the total number of words in the language j over the total number of words in the corpus, 

and j ranges over the languages present in the corpus

● Language Entropy (LE) : The bits of information needed to describe the distribution of 
language tags. language entropy is calculated as 



Code-Switched Hinglish and Kanglish Dataset
Table 3 :  Corpus statistics on code-switching metrics

Intent class Multilingual 
Index (M-index)

Language Entropy 
(LE)

Delivery queries 0.926 0.972

Insurance queries 0.680 0.858

Aadhaar queries 0.988 0.995

Medical queries 0.979 0.992

Find nearest queries 0.984 0.994

Reminder queries 0.975 0.991

Booking queries 0.873 0.950

Intent class Multilingual 
Index 
(M-index)

Language 
Entropy (LE)

Delivery queries 0.93893 0.9771

Aadhaar queries 0.99979 0.9999

Medical queries 0.97777 0.9918

Find nearest 
queries

0.7837 0.910

Reminder queries 0.98194 0.9934

Booking queries 0.91118 0.9666



Literature Survey
● Khanuja, Simran, et al. "GLUECoS: An Evaluation Benchmark for Code-Switched NLP." arXiv preprint arXiv:2004.12376 (2020).

Presents an evaluation benchmark, GLUECoS, for code-switched languages that spans several NLP tasks in English-Hindi.

Adaption - Since a new corpus was generated, code-switching statistics of the data in terms of standardized metrics for code-switching are used to 

validate code switching in the corpus. 

Some of the standardized code-switched metrics used are Multilingual Index (M-index) and Language Entropy (LE)

● Rong, Xin. "Word2vec parameter learning explained." arXiv preprint arXiv:1411.2738 (2014).

Provides detailed derivations and explanations of the parameter update equations of the word2vec models, including the original continuous 

bag-of-word (CBOW) and skip-gram (SG) models.

Adaption - The Skip-gram architecture to generate Word2Vec was implemented to the generated Hinglish and Kanglish corpus.

● Bhat, I. A., Mujadia, V., Tammewar, A., Bhat, R. A., & Shrivastava, M. (2014, December). IIIT-H system submission for FIRE2014 shared task on 

transliterated search. In Proceedings of the Forum for Information Retrieval Evaluation (pp. 48-53).

Gave insight as to how language identification models can be developed at a word level making use of bigram based character level language models. 

Mentioned the use of an open source transliteration engine called “Indictrans”.Also made their models and architecture reproducible and 

open-source, leading to shorter durations in development time and cross checking results.

Limitation - Application of Transliteration and Language Identification in the use case of intent classification has not been explored.

● Jayarao, P., & Srivastava, A. (2018, December). Intent Detection for code-mix utterances in task oriented dialogue systems. In 2018 International 

Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT) (pp. 583-587). IEEE.

Performed Experiments to identify which combination of Vectorizer and Model give the best results for code mixed hindi english utterances, and 

compared the same to the results from a dataset comprising of both monolingual and code mixed utterances.

Limitation - Does not expand on identifying vectorizer and model combinations for Kannada english utterances. Also does not provide an user crafted 

dataset for application specification intent classification.



Literature Survey
● Singh, Kushagra, Indira Sen, and Ponnurangam Kumaraguru. "A twitter corpus for Hindi-English code mixed POS tagging." Proceedings of the Sixth 

International Workshop on Natural Language Processing for Social Media. 2018.

Published an annotated dataset for Code Mixed Hindi-English POS tagging, by making use of tweets from a variety of sources. Compared and contrasted 

among RNN LSTM and Conditional Random Fields for Sequence Labelling. 

Limitation - Does not talk about specific use cases in which code mixed POS taggers could be taken advantage of. Also does not expand upon building 

POS taggers for other regional languages, like Kannada.

● Jurafsky, Daniel, and James H. Martin. "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, 

and Speech Recognition."

Adaption - This considered as a base for understanding various NLP tasks and it provided an insight into basics of POS tagging, Context free grammar, and 

sentence construction rules for imperative and interrogative sentences.

● Bhargava, Rupal, Bapiraju Vamsi, and Yashvardhan Sharma. "Named entity recognition for code mixing in indian languages using hybrid approach." 

Facilities 23.10 (2016).

It identifies the challenge that is faced in recognizing named entities in Indian Social Media Text which is Code Mixed. It describes the proposed approach 

for shared task CMEE-IL (Code Mix Entity Extraction in Indian Language), FIRE 2016. Proposed algorithm uses a hybrid approach of a dictionary cum 

supervised classification approach for identifying entities in Code Mix Text of Indian Languages such as Hindi- English and Tamil-English. 

Limitation - Does not make use of POS Tagging and Chunk Parsing to build feature vectors.



Design Architecture



Proposed Model
Overview

High Level Design



Low Level Design



Pipeline explained

 Intent classification-

It is essential to identify the type of the intent, so that the required action can be performed by the virtual assistant. A study was made on 

code-switched intent classification by using various supervised classification models with various vectorizing techniques to identify the 

efficient classification model. 

Vectorizers -

● Countvectorizer - The most straightforward vectorization method counts the number of times a token shows up in the document and uses 

this value as its weight. Since only the occurrence of the token matters, the language of the word and semantic meanings does not hold 

weightage in this technique.

● TF-IDF - TF-IDF stands for “term frequency-inverse document frequency”, meaning the weight assigned to each token not only depends on 

its frequency in a document but also how recurrent that term is in the entire corpora. Again, neither the language of the word nor semantic 

meanings hold any weightage. 

● Word2Vec - Word2Vec is based on a distributional hypothesis where the context for each word is in its nearby words. Hence, by looking at 

its neighbouring words, it can attempt to predict the target word. 

https://en.wikipedia.org/wiki/Distributional_semantics#Distributional_hypothesis


Skip-gram algorithm for Word2Vec

The Skip-gram architecture includes the following:

● Data Preparation - Define the corpus, clean, normalise and tokenize words

Input - “Mujhe dengue ka symptoms kaise pata chalega”

Processed - ["dengue","symptoms","pata","chalega"]

● Hyperparameters - 

Learning rate -  0.01

Epochs - 1000

Window size - 3

Embedding size(Dimension of vector) - 5



Skip-gram algorithm for Word2Vec

The Skip-gram architecture includes the following:

● Generate Training Data - Build vocabulary, one-hot encoding for words, build dictionaries 

that map an id to every word and vice versa

● Model Training - Pass encoded words through forward pass, calculate error rate, adjust 

weights using backpropagation and compute loss

● Inference - Get word vector and find similar words

Example - “dengue” = [0.2056069  0.62899894 0.6566051  1.96063547 0.56355276]

    "symptoms" = [0.2056069 0.62899894 0.6566051  1.96063547 0.56355276]

sim(symptoms)  => lakshan = 0.9727, lakshana = 0.9664

sim(dengue) =>  corona = 0.9664



Intent Classification

Classifiers applied

Naive Bayes Classifier

K-nearest Neighbour classifier

Random Forest Classifier

Linear Support Vector Classifier

Logistic Regression classifier

Decision Tree

Why not neural networks or deep learning approach?

Observation- Deep learning architectures require 
enormous amount of data to perform better without 
overfitting. Since in our scenario we generated the 
dataset which is small, the neural network models 
showed lesser accuracy on test examples.

While the probabilistic and statistical approach 
perform better at small scale data for test examples 
as well. Among these Support Vector classifier which 
considers even the non-linearity and hyperplane 
decision boundary gave the best results.



Language Identification, Translation, and 
Transliteration

The above tasks and the approaches used to solve the same have been described as below:

Task Solutions Considered

Language Identification: Given a sentence, tag each word of 
the sentence with the language it belongs to.

1. CRF Based sequence classification
2. Language Specific Lexicon’s as a Trie
3. Character N-Gram Based Language Modelling(LITCM)

Chosen: Character N-Gram Based Language Modelling

Language Translation: Given a sentence or a word in one 
language, translate it to another language.

Chosen:Google Translate API(Google Trans)

Language Transliteration: If a sentence is in Devanagiri Script, 
convert it to Roman Script.

Chosen: Indic Transliteration tool (LITCM)



Preprocessing Pipeline 
The preprocessing pipeline has 3 stages:

Input - show me nearest kapade ki dukaan jo achchha hai

1. Stop Word Removal 

Method - Get rid of words that don’t contribute to enhancing meaning of the query

Output - me, ki, jo, hai

2. POS Tagging -

Method - For Hindi-English and Kannada-English Code Switched POS Tagging, the paper  by Singh et al is considered, 
who concluded that the CRF model provided the best results for POS tagging of short code switched Hindi-English 
social media tweets

Output - show - verb, nearest - adjective, kapade - noun, dukaan - noun, achchha- adjective

3. POS filtering 

Method - Get rid of words that aren’t Nouns, Adjectives, Verbs, or Pronouns

Output - As all of the words in the previous phase are belonging to one of the above POS tags, the response 
remains the same.



Reordering the keywords

An imperative sentence is a sentence that resembles a request, or an order, or an intent to request.
Eg: Show me kal diya hua homework

An interrogative sentence is a sentence that resembles a question to something or someone.
Eg: ivatu weather Bangalore ali hegide?

The expressions so obtained were:

Interrogative Sentences ⇒ (What,When,Why,Where,Who,How) (pron)(adj)+ (noun)+

Imperative Sentences ⇒ verb (pron)(adj)* (noun)*

Adj : Adjective
Verb: verb
Noun: noun
Pron: pronoun
+ : Regular Expression Semantic for 1 or more than 1 matches

*  : Regular Expression Semantic for 0 or more matches 



Web scraping queries

Web scraping algorithm uses python beautiful soup module and requests library.

● Beautiful soup is used for pulling data out of HTML and XML files. It works with the 
parser to provide idiomatic ways of navigating, searching, and modifying the parse 
tree.

● Requests are used to send HTTP/1.1 requests extremely easily. 
Using requests library, its able to send HTTP request for google search engine by 
using final query and get the search results in a object ,then obtained result object is 
passed into beautifulsoup object where it converts the HTML or XML parse tree and 
from the pares tree its able to get the search data and use it for further tasks.



Named Entity Recognition
Named Entity Recognition is the process of tagging a word, or a substring within a query, with a singular category 
or topic, usually termed as a named entity. It is both a localization, and a classification task.

1.Pattern Based NER’s: Regular Expressions  and suffix/prefix based heuristics are developed to capture these entities as 
they have a specific pattern of occuring in a query string.

Eg: Dates, Phone Numbers, Email IDs etc
With more complicated named entities, regexes end up becoming very difficult to develop, as it is almost impossible to 
predict each and every variation in which a query can be asked by an user.

2.Dictionary Based NER’s: This is also referred to as Ontology, or Lexicon search. An external database comprising of 
category wise samples is referenced. The downfall of this approach lies in the fact that an absence of a named entity in an 
entity specific lexicon can lead to misclassifications.

Eg: Location/Address, Hotel Name, Person Name etc

3.Context Based NER’s: Uses words around a target word, to determine if it belongs to one of the many named entities. 
These models require the use of annotated data, with entities if present in a query, being correctly labelled. CRF’s can be 
used to train a context based NER model.



Named Entity Recognition

Intent Name Named Entities Involved

Hotel Booking Hotel Name, Date, Time, Number of Reservations

Restaurant Booking Restaurant Name, Date, TIme, Number of Reservations

Travel Booking Date, Time, Location 1, Location 2, Vehicle Type

Reminder Activity, Date, Time



Telegram User Interface



Tech stack

● Scripting, API development and Server Management(Backend): Python

● Assistant Interface: Telegram Messenger (python-telegram-bot library)

● Text Processing: iNLTK, NLTK

● Translation API: Google Translation API (googletrans python library)

● Version control: Git & GitHub

● Language Identification and Transliteration: litcm, indictrans

● Web interface: HTML, Javascript, python-requests(Flask)



Modelling and Implementation



Use case model



Sequence diagram
Sequence Diagram for Search based Intents Sequence Diagram for Action based Intents



Testing, Results and Discussion



Word2Vec skip gram model loss per epochs

Hinglish Dataset Kanglish Dataset



Eyeball method of testing for Word2Vec skip gram model

Word 1 Word 2 Cosine similarity index Hit

vehicles gaadi 0.940 HIT

treatment ilaaj 0.950 HIT

food khaana 0.880 HIT

health svaasthy 0.724 MISS

insurance beema 0.884 HIT

effects asar 0.945 HIT

symptoms lakshan 0.919 HIT

fees shulk 0.935 HIT

letter patr 0.948 HIT

nearest paas 0.761 MISS

Word 1 Word 2 Cosine Similarity index Hit

food oota 0.9505 HIT

letter patra 0.9721 HIT

lakshana symptoms 0.8911 HIT

prabhaava effect 0.97456 HIT

parinama effects 0.9192 HIT

time hotu 0.9788 HIT

show torisu  0.8442 MISS

Hinglish Dataset

Kanglish Dataset

Threshold > 0.85



Accuracy in intent classification 

Classifier Countvectorizer TF-IDF Word2Vec

Naive Bayes Classifier Hin:0.91265 

Kan:0.95354

Hin:0.88253 

Kan:0.90725

Hin:0.85240 

Kan:0.89919

K-nearest Neighbour classifier Hin;0.84036 

Kan:0.81451

Hin:0.85240 

Kan:0.85887

Hin:0.65060 

Kan:0.60008

Random Forest Classifier Hin:0.89759 

Kan:0.87096

Hin:0.84939 

Kan:0.84677

Hin:0.89457 

Kan:0.85483

Linear Support Vector Classifier Hin:0.95180 

Kan:0.97580

Hin:0.93975 

Kan:0.93951

Hin:0.84638 

Kan:0.91129

Logistic Regression classifier Hin:0.94879 

Kan:0.97580

Hin:0.92771 

Kan:0.91935

Hin:0.44879  Kan:0.75

Decision Tree Hin:0.90662 

Kan:0.88306

Hin:0.82831 

Kan:0.77822

Hin0.91265 

Kan:0.77419



Precision in intent classification

Classifier Countvectorizer TF-IDF Word2Vec

Naive Bayes Classifier Hin:0.92 
Kan:0.95

Hin:0.88 
Kan:0.92

Hin:0.87 
Kan:0.91

K-nearest Neighbour classifier Hin0.88 
Kan:0.87

Hin:0.86 
Kan:0.88

Hin:0.77 
Kan:0.79

Random Forest Classifier Hin:0.91 
Kan:0.89

Hin:0.87 
Kan:0.88

Hin:0.91 
Kan:0.87

Linear Support Vector Classifier Hin:0.96 
Kan:0.98

Hin:0.95 
Kan:0.95

Hin:0.87 
Kan:0.92

Logistic Regression classifier Hin:0.95 
Kan:0.98

Hin:0.93 
Kan:0.93

Hin:0.67 
Kan:0.80

Decision Tree Hin:0.92 
Kan:0.90

Hin:0.84 
Kan:0.83

Hin:0.93 
Kan:0.82



Recall in intent classification 

Classifier Countvectorizer TF-IDF Word2Vec

Naive Bayes Classifier Hin:0.91 
Kan:0.94

Hin:0.88 
Kan:0.91

Hin:0.85 
Kan:0.90

K-nearest Neighbour classifier Hin:0.84 
Kan:0.81

Hin:0.85 
Kan:0.86

Hin:0.65 
Kan:0.60

Random Forest Classifier Hin:0.90 
Kan:0.87

Hin:0.85 
Kan:0.85

Hin:0.89 
Kan:0.85

Linear Support Vector Classifier Hin:0.95 
Kan:0.98

Hin:0.94 
Kan:0.94

Hin:0.85 
Kan:0.91

Logistic Regression classifier Hin:0.95 
Kan:0.98

Hin:0.93 
Kan:0.92

Hin:0.45 
Kan:0.75

Decision Tree Hin:0.91 
Kan:0.88

Hin:0.83 
Kan:0.78

Hin:0.91 
Kan:0.77



F1-score in intent classification on Hinglish dataset

Classifier Countvectorizer TF-IDF Word2Vec

Naive Bayes Classifier Hin:0.91 
Kan:0.94

Hin:0.88 
Kan:0.91

Hin:0.85 
Kan:0.90

K-nearest Neighbour classifier Hin:0.84 
Kan:0.81

Hin:0.85 
Kan:0.86

Hin:0.67 
Kan:0.61

Random Forest Classifier Hin:0.90 
Kan:0.87

Hin:0.85 
Kan:0.85

Hin:0.89 
Kan:0.85

Linear Support Vector Classifier Hin:0.95 
Kan:0.98

Hin:0.94 
Kan:0.94

Hin:0.85 
Kan:0.91

Logistic Regression classifier Hin:0.95 
Kan:0.98

Hin:0.93 
Kan:0.92

Hin:0.44 
Kan:0.74

Decision Tree Hin:0.91 
Kan:0.88

Hin:0.83 
Kan:0.77

Hin:0.91 
Kan:0.78



Classification Metrics for NER with respect to Intents 

Intent Precision Recall F1-Score

Hotel Booking 0.96 0.712 0.8317

Restaurant Booking 1.0 0.60 0.75

Travel Booking 1.0 0.89 0.9412

Reminder 0.91 0.82 0.8615

Intent Precision Recall F Score

Hotel Booking 0.89 0.35 0.5024

Restaurant Booking 0.96 0.6515 0.776

Travel Booking 1.00 0.60 0.75

Reminder 0.68 0.62 0.6486

Hinglish Dataset

Kanglish Dataset



Demonstration



Conclusion

A robust intelligent assistant, which could respond to Hindi-English and Kannada-English 

code-switched input queries from the user, was developed from scratch. The pipeline involved 

researching on various natural language processing tasks on code-switched data including speech 

to text transcription, intent classification, parts of speech tagging, named entity recognition, 

keyword extraction and keyword structuring. A code-switched corpus was also generated with 

code-switched queries of frequently asked questions which had high strength when tested on 

standard code-switching metrics.  



Further work

1. Building the intent database for further Indian regional languages

2. Build a robust Kannada-English POS tagger

3. Pretrained Multilingual Supervised Word Embeddings(MUSE) published by Facebook Research can 
represent words of two or  more than two different languages in the same embedding space.

4. The use of a speech to text SDK for Automatic Speech Recognition tasks while convenient, does not 
incorporate strategies to enhance code mixed speech transcription. 



Thank you.

Any questions ?


